

LA-UR-21-22421

Approved for public release; distribution is unlimited.

Title: Overview of the ALDX Common Modeling Framework

Author(s): Hickmann, Kyle Scott

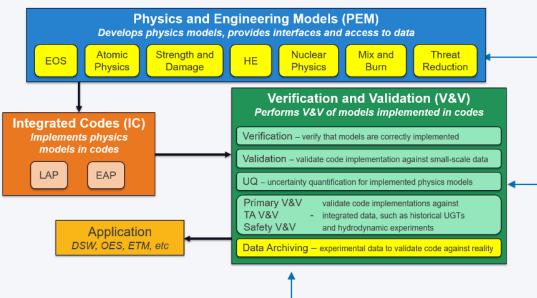
Intended for: Internal presentation to the HE working group

Issued: 2021-03-11

Overview of the ALDX Common Modeling Framework

Kyle Hickmann, XCP-8

2021/03/10


What are the benefits of using CMF?

- Experiment in CMF is ready for deep VVUQ analysis
 - Eliminates start-up time of getting a first simulation ready
 - All VVUQ with a CMF experiment starts from the same place, analysis results are comparable
- A material model in CMF can be used in many experiments by the same researcher
- A researcher using CMF automatically shares their simulation setup and analysis with the division and they leverage the work of all CMF contributors
- CMF provides a starting place to set up a simulation
 - Many material models are already there
 - Many meshing examples are already complete
 - Many ALE strategies are available
 - Many post-processing capabilities already exist

CMF is intentionally designed to take advantage of the "Data → Model → Validation → Application" workflow pipeline of ASC.

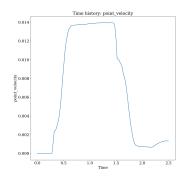
CMF is designed to work in concert with PEM, IC, and V&V to provide a better connection between projects and with the applications.

CMF is working on building interfaces to **PEM data repositories**... this will automate availability of these repos for all CMF users.

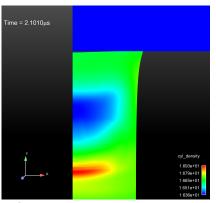
Projects can inherit from each other within CMF to facilitate the flow from small-scale to integrated experiments.

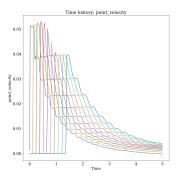
This means that instead of each project creating its own model (as was done in the past), modelers are freed up to **focus on the physics** and provide a higher quality product.

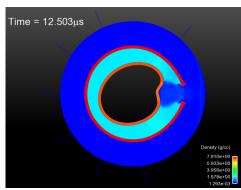
CMF is working on building interfaces to **experimental data repositories**... this will automate availability of these repos for all CMF users.



Overview of the Common Modeling Framework

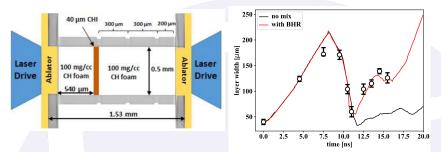

- "What is the CMF?"
 - A large-ish python project within ALDX created to aid design, assessment, and VVUQ.
- "Yeah, but what is CMF?"
 - An effort to standardize input deck generation, execution, and analysis while providing a repository for modeling recommendations from PEM, IC, VVUQ, and other projects.
- "If I check out the CMF git repo, what will I see?"
 - A set of python modules that each control the generation of specific input deck sections for one of the ASC codes.
 - A class that organizes sections into a standardized input deck.
 - Sets of defaults for material models and per-experiment model setups.


The LAPA simulation suite


Single layer, windowed flyers in EAPA & LAPA

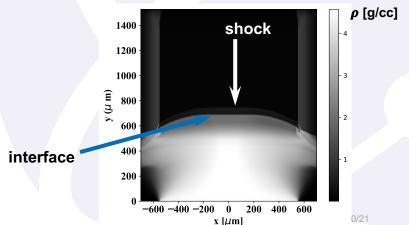
Taylor anvil in LAPA

Embedded gauge flyers in EAPA & LAPA

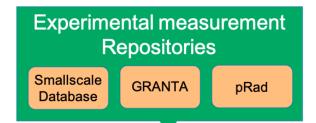

Cyclops in LAPA

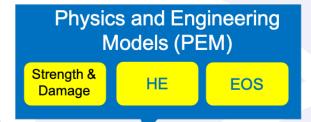
A wide variety of simulations (~70 simulations) have been entered under the LAPA authority

- Inert, HE, and reactive-polymer "flyerplate" experiments
- HE cylinder tests
- Ejecta coupon tests
- Taylor anvil experiments
- "Corner-turning" HE cylinders
- Sushi and Fich experiments
- Cyclops
- Cagliostro


The EAPA simulation suite

- The EAPA simulation suite is newer (~50 simulations)
 - HE flyerplate experiments
 - HE cylinder tests
 - Poggi shock tube
 - NIF implosion (extremely simplified)
 - Radiation flow test
 - Shaped charge
 - Modcons laser experiments
 - Omega laser Mshock experiments


Geometry and results of Mshock experiment in EAPA


ModCons density map generated in EAPA

Flow of data within OES & ASC to VVUQ

CMF is building interfaces to experimental data repositories. Automating availability of these repos for all CMF users.

Verification, Validation, & Uncertainty Quantification (VVUQ)

Verification – Verify models implemented correctly

Validation – Validate code implementation against small-scale data

UQ – Uncertainty quantification for ASC simulations

Primary V&V TA V&V Safety V&V

Validate code implementations against integrated data, such as historical UGTs and hydrodynamic experiments

CMF is building interfaces to **PEM data repositories.** Automating information exchange between model calibration and validation/UQ.

Shared material models in CMF

- ModMat classes store the material property classes
- SimMat classes call a code-specific method on material property classes to print blocks of input decks
- Shared material-property classes are under development that contain methods for xRage and Flag
- Allows for easy cross-code VVUQ
- Shared material classes have several CS advantages:
 - Built in type checking
 - Unit-aware attributes
 - Pseudo-database structure of parameter sets

Shared material models database

- For each material multiple parameterizations exist for a single material property
- Selection of a single parameterization based on
 - **Source:** Publication, memo, note specification
 - Material: Copper, PBX9501, etc.
 - Property model: PTW, Sesame EOS, SURF, etc.
 - **Use:** When to use this parameterization.
- By specifying any 3, a collection of parameterizations is available to use in a ModMat

PEM material model interface

- Shared material-property classes can be instantiated by a YAML file
- The YAML format is simple, human readable, unit aware
- Will allow PEM projects like HE and Strength & Damage to maintain a collection of recommendations that CMF automatically ingests
- This is prototyped for the PEM-HE project and we are working on developing the machinery for PEM-S&D
- Goal is to provide a pipeline from PEM calibration to VVUQ evaluation

Interface with Experimental Data

- Experimental data related to CMF simulations is stored in several places
- Through the afterPost() method in per-experiment hooks CMF can compare simulation output to experimental data for VVUQ
- Most experimental data used is currently stored in /usr/projects/cmf/LargeData
- CMF wants to stay out of the "data curation" business
- Working on developing automatic interfaces with the SmallScale database
- PEM-HE database of HE data
- When complete, CMF post-processing will automatically pull from these databases

